In computer networking, a wireless access point ( WAP) (also just access point ( AP)) is a networking hardware device that allows other Wi-Fi devices to connect to a wired network or wireless network. As a standalone device, the AP may have a wired or wireless connection to a Network switch or router, but in a wireless router it can also be an integral component of the networking device itself. A WAP and AP is differentiated from a hotspot, which can be a physical location or digital location where Wi-Fi or WAP access is available.1
Ad hoc connections are generally not recommended for a permanent installation. Internet access via ad hoc networks, using features like Windows' Internet Connection Sharing or dedicated software such as WiFi Direct Access Point, may work well with a small number of devices that are close to each other, but ad hoc networks do not scale well. Internet traffic will converge to the nodes with direct internet connection, potentially congesting these nodes. For internet-enabled nodes, access points have a clear advantage, with the possibility of having a wired LAN.
Most jurisdictions have only a limited number of frequencies legally available for use by wireless networks. Usually, adjacent APs will use different frequencies (channels) to communicate with their clients in order to avoid interference between the two nearby systems. Wireless devices can "listen" for data traffic on other frequencies, and can rapidly switch from one frequency to another to achieve better reception. However, the limited number of frequencies becomes problematic in crowded downtown areas with tall buildings using multiple APs. In such an environment, signal overlap becomes an issue causing interference, which results in signal degradation and data errors.
Wireless networking lags wired networking in terms of increasing bandwidth and throughput. While (as of 2013) high-density 256-QAM modulation, 3-antenna wireless devices for the consumer market can reach sustained real-world speeds of some 240 Mbit/s at 13 m behind two standing walls (NLOS) depending on their nature or 360 Mbit/s at 10 m line of sight or 380 Mbit/s at 2 m line of sight (IEEE 802.11ac) or 20 to 25 Mbit/s at 2 m line of sight (IEEE 802.11g), wired hardware of similar cost reaches closer to 1000 Mbit/s up to specified distance of 100 m with twisted-pair cabling in optimal conditions (Category 5 (known as Cat-5) or better cabling with Gigabit Ethernet). One impediment to increasing the speed of wireless communications comes from Wi-Fi's use of a shared communications medium: Thus, two stations in infrastructure mode that are communicating with each other even over the same AP must have each and every frame transmitted twice: from the sender to the AP, then from the AP to the receiver. This approximately halves the effective bandwidth, so an AP is only able to use somewhat less than half the actual over-the-air rate for data throughput. Thus a typical 54 Mbit/s wireless connection actually carries TCP/IP data at 20 to 25 Mbit/s. Users of legacy wired networks expect faster speeds, and people using wireless connections keenly want to see the wireless networks catch up.
By 2012, 802.11n based access points and client devices have already taken a fair share of the marketplace and with the finalization of the 802.11n standard in 2009 inherent problems integrating products from different vendors are less prevalent.
The most common solution is wireless traffic encryption. Modern access points come with built-in encryption. The first generation encryption scheme, WEP, proved easy to crack; the second and third generation schemes, WPA and WPA2, are considered secure if a strong enough password or passphrase is used.
Some APs support hotspot style authentication using RADIUS and other authentication servers.
Opinions about wireless network security vary widely. For example, in a 2008 article for Wired Magazine magazine, Bruce Schneier asserted the net benefits of open Wi-Fi without passwords outweigh the risks, a position supported in 2014 by Peter Eckersley of the Electronic Frontier Foundation. The opposite position was taken by Nick Mediati in an article for PC World, in which he advocates that every wireless access point should be protected with a password.
|
|